
ALERT2 Encryption and Authentication
David Van Wie, Adam Torgerson, R Chris Roark

June 2, 2017 / Revised May 2, 2018

Introduction

With the increase is usage of the ALERT2 protocol, it has become clear that there is a
need to support encryption and authentication at the protocol level. Encryption is
valuable to protect any sensitive information transmitted via the ALERT2 protocol, and
as a means to perform authentication. Authentication -- verifying that a message is
genuine -- is an essential part of any command and control system. Recent attacks [1]
have shown that even public safety systems are not immune from intentional abuse and
hacking.

There are several immediate use cases for encryption and authentication in ALERT2:

● Command and Control - control of flashers, gates, and warning sirens, for
example.

● Sensor data near hydroelectric sites - This information must be protected for
some duration before it is released to the public.

● Remote IND configuration and management - "Over-the-air" management of an
ALERT2 device should require authentication.

In this document, we propose adding industry-standard encryption techniques to the
ALERT2 protocol, at the MANT layer, to provide both authentication and encryption.

Discussion

MANT Layer
We propose implementing the encryption changes at the MANT layer, leaving the
MANT header in plain text. Repeaters, then, need not know how to decrypt a message

in order to process it, and plain text and encrypted messages can coexist on the same
system.

Providing encryption at the MANT layer ensures that secure service is available to both
IND and APD devices. It is our hope that, by providing encryption at the IND, it will be
adopted rapidly and widely throughout the community for command and control
applications.

Encryption Algorithm
We propose the use of AES-128 as the core encryption algorithm for use in ALERT2.
The Advanced Encryption Standard (AES) is an encryption algorithm adopted as the
standard by National Institute of Standards and Technology (NIST) in 2001 [2], and has
been approved for encryption of classified data by the NSA [3].

Essential attributes of an encryption algorithm for use in the ALERT2 protocol include:

● Performance - the algorithm must be suitable for use on low-power embedded
systems.

● Efficient operation on small blocks of data - the chosen encryption technology
must not dramatically increase the size of the message.

● Symmetric - because we only want known sites to be able to transmit to other
sites, a public/private key system is not required for this application.

● Broadly accepted - selecting an algorithm with broad acceptance and a high level
of security will make it easier for the protocol to gain acceptance in different
applications.

The AES algorithm performs well on all of the attributes described above. There are a
large number of freely available open source implementations of AES [4] optimized for a
variety of different embedded platforms -- including the widely-used AVR32 processor --
in addition to variants optimized for PCs. AES is a block cipher (operating on fixed
blocks of 128 bits), but it can also be used as a stream cipher, where the number of
output bits matches exactly the number of input bits.

AES Modes
Block ciphers, such as AES, do not provide a complete encryption solution in isolation.
The crux of the issue is that the same 128-bit input sequence produces the the same
128-bit output sequence. This can cause information to "leak" through the encryption if,

for example, the cipher is being used to encrypt data that has long strings of repeated
values. The industry has established different "modes of operation" that describe a
process for using a block cipher where this problem is addressed.[5, 6]

Of the different modes of operation, counter mode (CTR) is particularly well suited to
low-bandwidth applications because it introduces no message-size overhead. In CTR
mode, the sender and the receiver both need to know the key and one additional piece
of shared information, called a nonce. The nonce need not be secret, but should never
be reused with the same key.

Authentication
This proposal defines a simple authentication scheme: if a message can be successfully
decrypted using a shared encryption key, it is considered to be genuine. In order for an
encrypted message to be transmitted and received successfully, both the sender and
the receiver must use the same secret key.

In short, anyone possessing the encryption key is authenticated. This means that
system maintainers must have a process for retiring keys in the case that a key is
compromised, and should cycle keys on a regular schedule.

A word of caution is warranted here: it is difficult to prevent an attacker with physical
access to a programmed ALERT2 modem from recovering an encryption key. However,
ALERT2 IND manufacturers should take reasonable precautions to secure encryption
keys.

Methods of Attack
In addition to traditional attacks on the encryption algorithm or the key, a security
solution for ALERT2 needs to be concerned with replay attacks and forgeries.

In a replay attack, the attack need not know how to decrypt a message. Instead, the
attack simply records the message and plays it back later. For example, an attacker
might record the command used to turn on a warning siren during a planned test, and
then attempt to broadcast that same message, unaltered, at a later time.

In a forgery, an attacker attempts something similar - leaving the encrypted payload of a
message intact, but modifying the message metadata. For example, taking an "open the

gate" message intended for site A, changing the destination address to site B, and then
transmitting it.

By using an ever-increasing message ID and a cryptographic hash, we can protect
against both types of attacks. In CTR mode, we combine this message ID with the
source address of the MANT PDU and use that as this nonce.

Proposed Updates

API Updates
The IND shall support the following API methods:

Name Type Length Min Max Default Description

Encrypt
Outgoing
Transmissions

130 1 0 1 0 0=off, 1=on

Encryption
Source Address
To Configure

131 2 0 65534 0 source address to apply
API commands 132 to 135
against, 0=global

Encryption Key
Rotation Time

132 4 0 2^32-1 0 Time at which encryption
key change takes effect, in
seconds since Jan 1,
1970, UTC. 0=immediate

Set Encryption
Key

133 16 N/A N/A N/A [16 Byte Key]

Remove
Encryption Key

134 0 N/A N/A N/A remove encryption key

EMID 135 3 0 2^24-1 0 [3 Byte EMID Value]

Encryption
Address List

136 0 N/A N/A N/A Useful on decoders,
returns a TLV containing
two-byte address for which

an encryption key is set or
pending.

The Encryption Key and EMID methods (124-125) use the values specified in the
Encryption Source Address To Configure and Encryption Key Rotation Time to
determine if the settings are to be applied site-wide, or to a specific source address. It is
recommended that methods 131 and 132 be called immediately before calling methods
133-135.

If the Encryption Source Address To Configure is set to 0, the resulting encryption key is
said to be a general purpose key; if the Encryption Source Address To Configure is set
to another value, the key is said to be site-specific.

For each source address with an encryption key, the IND must maintain both an active
key and a pending key with a rotation time. When setting encryption keys, the IND shall
compare the Encryption Key Rotation Time configuration variable to the current time. If
this value is set to a time in the future, the change does not take effect immediately.
Rather, the active key is left intact, and the pending key and rotation time are updated. If
the time specified in the Encryption Key Rotation Time variable is less than or equal to
the current time, the pending key is cleared and the active key is set to the specified
value. When an active key is set, the EMID values for all sites associated with that key
are reset. For a source-specific key, this is just the EMID associated with that key's
source address. For a general purpose key, this is all EMID's not associated with a
source-specific key.

As a security measure, the IND device shall not return encryption keys via the API.

Outgoing transmissions shall be encrypted when the Encrypt Transmissions API flag is
set. If the source address of the message matches an active site-specific key known to
the IND, that key is used for encryption; otherwise, the general-purpose key is used. If
the Encrypt Transmissions flag is set but no matching source-specific key and no
general-purpose key is present, the IND shall not transmit the MANT.

Upon receipt of an encrypted message, the receiving IND shall first check to see if a
matching source-specific encryption key is known and active. If so, that key shall be
used for decryption. If not, the general-purpose key shall be used.

The EMID command sets or gets the value of the EMID associated with an encryption
key. Received messages must have an EMID greater than or equal to the EMID value

set/returned by this API method, and the next outgoing message will be encoded using
this EMID value.

Because the IND updates EMID values in non-volatile memory during normal
operations, EMID and Encryption Key commands are written directly to non-volatile
memory, rather than when the API save command is given.

Binary and ASCII Output Updates
A critical part of the Encryption and Authorization protocol extension is communicating
to downstream consumers of the ALERT2 data that a message was successfully
decrypted and should be considered genuine. This information needs to be
communicated using both the ASCII and the Binary output protocols.

For binary communication, the IND shall send an additional TLV with ID 1028, length 1,
and value of 1 if a message was successfully decrypted on receipt or 0 if it was sent
unencrypted. This TLV should be added to the MANT PDU section of output described
in the “ALERT2 Demodulator & Decoder Binary Asynchronous Serial Interface” section
of the ALERT2 IND API Specification document.

For ASCII communication, the IND shall send an additional metadata message prior to
each “N” message with additional metadata. The format of the M message is:

M, Message Type
(P/N),

Year, Month, Day, Hour
,

Minute, Second, ENC=Value

The Value field shall contain 0 if the message was sent in plain text, or 1 if it was sent
encrypted. The M message may be omitted if the value is 0.

The timestamp of the M message shall be the same as the N or P message with which
it is associated.

MANT Updates
The MANT header will remain in "clear text", regardless of whether or not a message is
encrypted. In order to maintain backwards compatibility with existing installations, the
encryption implementation does not change the length of the MANT header, instead
inserting the extra data required for encryption into the MANT payload.

The first of the three reserved bits in the MANT Header will become an "encrypted
payload" flag.

The MANT header will then look like:

Byte Bits Field Hash

0 7-6 Version include

0 5-3 Protocol ID include

0 2 Timestamp Service Request Flag include

0 1 Add Path Service Request Flag include

0 0 Destination Address in Header include

1 7-4 Port include

1 3 Encrypted Payload include

1 2-1 Reserved include

1 0 ACK Flag include

2 7 Added Header Flag include

2 6-4 Hop Limit mask

2 3-0 Payload Length include

3 7-0 Payload Length include

4 7-0 Source Address include

5 7-0 Source Address include

[6] 7-0 Destination Address include if present

[7] 7-0 Destination Address include if present

[8] 7-0 MANT PDU ID include if present

[9] 7-0 Number of Added Source Addresses exclude

[10] 7-0 [Source Address List] exclude

[11] 7-0 [Source Address List] exclude

If encryption is enabled, before transmitting a MANT PDU, the IND shall prepend a
3-byte Encrypted Message ID(EMID) to the beginning of the MANT payload. The EMID
value shall begin at zero, and shall increment by one each time the IND creates a
MANT PDU. The value of the EMID should be stored to nonvolatile memory after it has
been incremented. Users may set the next EMID value using the EMID API command,
or reset the EMID to zero by changing the encryption keys. The same Source Address
and Encryption Key should never be reused with the same EMID, and the receiving
device will refuse to decrypt messages with an EMID that is less than or equal to the
last valid EMID received. In the event that a device needs to be replaced, the EMID
must be set to a value greater than the last transmitted message, but it is not necessary
to set the EMID to exactly the next value in the sequence; so long as it is greater than
the last EMID sent by the device and it is not too close to the maximum value, any
number will work. Alternatively, if the encryption keys are changed, the EMID can be
reset to 0. This is preferable if the replaced device was compromised (i.e. stolen).

In order to ensure message integrity, the IND shall compute the SHA-1 hash of the
MANT header, first masking the the hop limit bits so they are always zero, and
excluding the number of added source addresses and the source address list,

concatenated with the MANT payload, including the EMID. The IND shall truncate this
hash, retaining only the most significant 4 bytes, and append it, most significant byte
first, to the MANT payload. The payload length field in the header shall be updated to
reflect the additional 7 bytes of payload.

The IND shall then encrypt the MANT payload, starting after the EMID and including the
hash, using AES-128 in CTR mode. The Initialization Vector used for the AES-CTR
mode encryption consists of the two-byte source address and the three-byte EMID
value in the high bits, and zeros in the low bits (CTR mode will increment the lower- bits
of the IV with every block). If a source-address specific encryption key is set for an
outgoing MANT message, the IND will use that for encryption. Otherwise, the global
one, will be used

Upon receipt of a MANT message with the encryption flag set, the receiving IND
compares the EMID at the start of the payload block to the EMID of the last valid
message received from the same source address (stored in nonvolatile memory). If the
received EMID is not strictly greater than the last valid EMID received, the message
shall be discarded. Note: regardless of whether the transmitters in the system are using
a general purpose encryption key or a site specific encryption key, the transmitter
maintains a single, monotonically incrementing EMID value, while the receiver
maintains an EMID value for each source address from which it has received encrypted
messages. Further, it is possible for the transmitter to be configured to send MANT
PDUs using different source addresses -- either through independent source address
configuration or through the IND API -- but the transmitter still retains a single EMID and
encryption key used across these addresses. EMID values are reset when encryption
keys are changed.

If the EMID transmitted with the MANT payload is greater than the EMID stored on the
device (from the last successfully decoded message), the IND should decrypt the MANT
payload using either the General Purpose key or a Source Address Specific key, if one
is present. After decrypting the message, the receiving IND should compute the SHA-1
hash of the MANT header and the decoded payload, and compare the result to the
received hash value. If the values do not match, the message shall be discarded.

If the message is found to be valid, the EMID associated with the Source Address of the
message shall be updated in non-volatile memory, and the IND shall output the
decrypted results. The Encrypted Payload bit shall only be set when the contents of the
payload are actually encrypted. After successful decryption, this bit shall be cleared
when the message is output.

For backwards compatibility, when using the API v1.0 or v1.1 ASCII format to display a
MANT PDU, the encrypted bit shall remain combined with the other reserved bits.

Key Generation
To support a user-friendly and portable mechanism for key generation, it is
recommended that user-facing applications implement a process where a 16-byte
binary key can be generated from a variable length passphrase by using the first
16-bytes of the SHA256 hash of the passphrase.

For example, the passphrase “this is my passphrase” would generate the key
“53:57:CE:17:87:33:55:2B:11:76:D4:30:6E:C2:B1:5D”.

Examples

API Configuration

Before encrypting a message, encryption must be enabled. The following API
commands will accomplish that:

Type Length Value Type Length Value

117 1 1 133 16 "keep me secret!!"

75 01 01 85 10 6B 65 65 70 20 6D 65 20 73
65 63 72 65 74 21 21

Type Length Value

130 1 1

82 01 01

Encryption

Given the following MANT input:

Header Payload

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

03 00 10 0b 03 e8 06 40 00 70 01 08 12 12 03 24 13 22 02 76

Along with an EMID of 850 and an encryption key of “keep me secret!!”, the encryption
process will look like:

● Update the MANT

Header EMID Payload

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

03 08 10 12 03 e8 06 40 00 00 03 52 70 01 08 12 12 03 24 13 22 02 76

● Compute the SHA1 hash on the MANT as follows:

Header EMID Payload

0 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22

03 08 00 12 03 e8 06 40 00 03 52 70 01 08 12 12 03 24 13 22 02 76

Note that the hop limit bits is masked, and the source address list is removed. The
resulting hash begins with "725db2b2".

● Encrypt the payload

The key and the IV should be:

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Key 6b 65 65 70 20 6d 65 20 73 65 63 72 65 74 21 21

IV 03 e8 00 03 52 00 00 00 00 00 00 00 00 00 00 00

And the results should be:

 Header EMID Payload Hash

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Plaintext 03 08 10 12 03 e8 06 40 00 00 03 52 70 01 08 12 12 03 24 13 22 02 76 72 5d b2 b2

Encrypted 03 08 10 12 03 e8 06 40 00 00 03 52 11 46 df 21 a1 e0 fb 1e 42 5c 93 1a 7c 62 50

Interactions
Adding encryption enables secure use of the MANT Command and Control protocol. The
Command and Control protocol should only accept messages that were encrypted.

Limitations
This scheme introduces 7-bytes of overhead per encrypted MANT PDU.

The Add Timestamp service will work if the originating IND knows the time, but it would
not be possible for a downstream repeater to add a timestamp. In order to ensure
backwards compatibility, the "Add Timestamp" flag shall be set to 0 on an encrypted
MANT packet.

It is recommended that in future versions of the protocol, the EMID, the hash, and the
added timestamp data all be moved out of the MANT payload and into their own fields
in the MANT header. This would allow the MANT payload to remain intact and
unchanged from source to sink, and would enable the use of the Add Timestamp
service with encrypted messages in all cases.

This scheme only addresses encryption over an ALERT2 network. IND services that
send information over the internet, APD applications, etc., are not covered by this
proposal.

References

[1] https://www.nytimes.com/2017/04/08/us/dallas-emergency-sirens-hacking.html

[2] http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

[3] https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

[4] https://en.wikipedia.org/wiki/AES_implementations

https://www.nytimes.com/2017/04/08/us/dallas-emergency-sirens-hacking.html
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/AES_implementations

[5] Helger Lipmaa, Phillip Rogaway, and David Wagner. Comments to NIST concerning
AES modes of operation: CTR-mode encryption. 2000

[6] https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

